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ABSTRACT

We give a construction of measures with partial sum of Lyapunov expo-

nents bounded from below.

Introduction

Let M be a compact C1-Riemannian manifold of dimension d and let f : M → M

be a C1-map. For 1 6 k 6 d, we denote by Sk the set of C1-maps σ: Dk =

[0, 1]k → M . We define the k-volume of σ ∈ Sk by the formula:

V (σ) =

∫

Dk

|ΛkTxσ|dλ(x),

where dλ is the Lebesgue measure on Dk and |ΛkTxσ| is the norm of the linear

map ΛkTxσ: ΛkTxDk → ΛkTσ(x)M induced by the Riemannian metric on M .

Some connections between the volume growth of iterates of submanifolds of

M and the entropy of f have been studied by Y. Yomdin (see [8] and [4]),

S. E. Newhouse (see [7]), O. S. Kozlovski (see [6]) and J. Buzzi (see [2]).

In this article, we prove that the volume growth of iterates of submanifolds

of M permits to create invariant probability measures with partial sum of Lya-

punov exponents bounded from below (see [5] for the definition of Lyapunov

exponents). More precisely, for 1 6 k 6 d we define the k-volume-expansion:

dk := lim sup
n→∞

1

n
log sup

σ∈Sk

V (fn ◦ σ)

V (σ)
.

We will prove the following theorem.
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Theorem: For all integer k between 1 and d = dim(M) there exists an ergodic

invariant probability measure ν(k) for which

k
∑

i=1

χi > dk.

Here χ1 > χ2 > · · · > χd are the Lyapunov exponents of ν(k).

Notice that when k = d and f is a ramified covering in some sense, the

theorem can be deduced from a result due to T.-C. Dinh and N. Sibony (see [3]

Paragraph 2.3).

Proof of the theorem

Let k be a positive integer between 1 and d. We have to prove that there exists

an ergodic invariant probability measure ν(k) for which (see [1] Chapter 3)

(1)
k

∑

i=1

χi = lim
m→∞

1

m

∫

log |ΛkTyf
m|dν(k)(y) > dk.

There will be three steps in the proof of the theorem.

In the first one, we will change the volume-expansion dk into an expansion

of |ΛkTxfn|. More precisely, we will find points xnl
with 1

nl
log |ΛkTx(nl)f

nl | >

dk − ε(l) (with ε(l) → 0 when l → +∞).

In the second part, we will see that the expansion of |ΛkTx(nl)f
nl | can be

spread out in time. We will give the construction of a measure νl such that

dk − ε′(l) 6
1
m

∫

log |ΛkTyf
m|dνl(y) (with ε′(l) → 0 when l → +∞).

The third step of the proof will be to take the limit when l → ∞ in the

previous inequality.

1) First step. Let nl be a subsequence such that

1

nl

log sup
σ∈Sk

V (fnl ◦ σ)

V (σ)
→ dk.

We can find now a sequence σnl
∈ Sk which verifies

1

nl

log
V (fnl ◦ σnl

)

V (σnl
)

→ dk.

In the next lemma, we prove that we have expansion for |ΛkTxfn| for some x.
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Lemma 1: For all l > 0 there exists x(nl) ∈ M with:

log |ΛkTx(nl)f
nl | > log

(V (fnl ◦ σnl
)

2V (σnl
)

)

.

Proof: If this was not the case, then we would have an integer l such that for

all x ∈ M ,

|ΛkTxfnl | 6
V (fnl ◦ σnl

)

2V (σnl
)

.

So (see [1] chapter 3.2.3 for properties on exterior powers),

V (fnl ◦ σnl
) =

∫

Dk

|ΛkTx(fnl ◦ σnl
)|dλ(x) =

∫

Dk

|ΛkTσnl
(x)f

nl ◦ΛkTxσnl
|dλ(x)

is bounded from above by
∫

Dk

|ΛkTσnl
(x)f

nl ||ΛkTxσnl
)|dλ(x) 6

V (fnl ◦ σnl
)

2

and we obtain a contradiction.

Corollary 1: There exists a sequence ε(l) which converges to 0 such that

1

nl

log |ΛkTx(nl)f
nl | > dk − ε(l),

for some points x(nl) in M .

2) Second step. In this section, we will spread out in time the previous

expansion. Let m be a positive integer. We will cut now nl in m different ways.

By using the Euclidian division, we can find qi
l and ri

l (for i = 0, . . . , m − 1)

such that

nl = i + m × qi
l + ri

l ,

with 0 6 ri
l < m.

If i ∈ {0, . . . , m − 1}, we have

|ΛkTx(nl)f
nl | 6 |ΛkT

f
i+mqi

l (x(nl))
f ri

l | ×

qi
l−1
∏

j=0

|ΛkTfi+jm(x(nl))f
m| × |ΛkTx(nl)f

i|,

so, using the previous corollary,

nl(dk − ε(l)) 6 log |ΛkT
f

i+mqi
l (x(nl))

f ri
l | +

qi
l−1
∑

j=0

log |ΛkTfi+jm(x(nl))f
m|

+ log |ΛkTx(nl)f
i|.
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If we sum over the m different ways to write nl, we obtain:

mnl(dk − ε(l))6

m−1
∑

i=0

log |ΛkT
f

i+mqi
l (x(nl))

f ri
l |+

m−1
∑

i=0

qi
l−1
∑

j=0

log |ΛkTfi+jm(x(nl))f
m|

+
m−1
∑

i=0

log |ΛkTx(nl)f
i|.

We have to transform this estimate into a property of a measure. To achieve

this we remark that

log |ΛkTfp(x(nl))f
m| =

∫

log |ΛkTyf
m|dδfp(x(nl))(y),

where δfp(x(nl)) is the dirac measure at the point fp(x(nl)).

So the previous inequality becomes

dk − ε(l) 6 al +
1

m

∫

log |ΛkTyf
m|d

(

1

nl

m−1
∑

i=0

qi
l−1
∑

j=0

δfi+mj(x(nl))

)

(y) + bl,

with

al =
1

mnl

m−1
∑

i=0

log |ΛkT
f

i+mqi
l (x(nl))

f ri
l |

and

bl =
1

mnl

m−1
∑

i=0

log |ΛkTx(nl)f
i|.

Now, since f is a C1-map we have:

al 6
1

mnl

m−1
∑

i=0

log Lmk
6

km2

mnl

log L

where L = max(maxx |Txf |, 1) and

bl 6
1

mnl

m−1
∑

i=0

log Lmk
6

km2

mnl

log L.

So the sequences al and bl are bounded from above by a sequence which con-

verges to 0 when l tends to infinity.

In conclusion, we have

(2) dk − ε′(l) 6
1

m

∫

log |ΛkTyfm|dνl(y),
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with

νl =
1

nl

m−1
∑

i=0

qi
l−1
∑

j=0

δfi+mj(x(nl)),

and ε′(l) a sequence which converges to 0.

3) Third step. The aim of this section is to take a limit in (2).

First, observe that

νl =
1

nl

nl−m
∑

p=0

δfp(x(nl))

and that the sequence 1
nl

∑nl−1
p=0 δfp(x(nl)) − νl converges to 0. In particular,

there exists a subsequence of νl which converges to a measure ν which is a

probability measure invariant under f and independent of m. We continue to

call νl the subsequence which converges to ν. To complete the proof of the

theorem, we have to take the limit in (2). However, we have to be careful

because the function y 7→ log |ΛkTyf
m| is not continuous. But, we have the

following lemma.

Lemma 2:

lim sup
l→∞

1

m

∫

log |ΛkTyfm|dνl(y) 6
1

m

∫

log |ΛkTyfm|dν(y).

Proof: For r ∈ N, let Φr(y) = max(log |ΛkTyfm|,−r). The functions Φr are

continuous and the sequence Φr decreases to the map y 7→ log |ΛkTyfm| when

r goes to infinity. Then

1

m

∫

log |ΛkTyf
m|dνl(y) 6

1

m

∫

Φr(y)dνl(y)

and

lim sup
l→∞

1

m

∫

log |ΛkTyfm|dνl(y) 6
1

m

∫

Φr(y)dν(y),

because Φr is continuous. Now, we obtain the lemma by using the monotone

convergence theorem.

Remark: This lemma is valid for any upper semicontinuous function instead

of y 7→ 1
m

log |ΛkTyf
m|.

It remains to take the limit when l → +∞ in (2). Then we obtain
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Corollary 2: For all m, we have

dk 6
1

m

∫

log |ΛkTyfm|dν(y).

In particular (see (1)),

dk 6

∫ k
∑

i=1

χi(y)dν(y)

where the χ1 > χ2 > · · · > χd are the Lyapunov exponents of ν. Finally, by

using the ergodic decomposition of ν, we obtain the existence of an ergodic

invariant probability measure ν(k) with

dk 6

k
∑

i=1

χi.
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nal de Mathématiques Pures et Appliquées 82 (2003), 367–423.

[4] M. Gromov, Entropy, homology and semialgebraic geometry, Astérisque 145–146
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