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ABSTRACT

We give a construction of measures with partial sum of Lyapunov expo-
nents bounded from below.

Introduction

Let M be a compact C*'-Riemannian manifold of dimension d and let f: M — M
be a C'-map. For 1 < k < d, we denote by Si the set of C'-maps o: D¥ =
[0,1]% — M. We define the k-volume of o € Sy, by the formula:

V(o) = /D INToliA@),

where d) is the Lebesgue measure on D¥ and |[AFT,0| is the norm of the linear
map A*T,o: AFT,DF — AkTg(I)M induced by the Riemannian metric on M.
Some connections between the volume growth of iterates of submanifolds of
M and the entropy of f have been studied by Y. Yomdin (see [8] and [4]),
S. E. Newhouse (see [7]), O. S. Kozlovski (see [6]) and J. Buzzi (see [2]).

In this article, we prove that the volume growth of iterates of submanifolds
of M permits to create invariant probability measures with partial sum of Lya-
punov exponents bounded from below (see [5] for the definition of Lyapunov
exponents). More precisely, for 1 < k < d we define the k-volume-expansion:

1 V(f"
d := lim sup — log sup M.
n—oo N oc€S) V(U)

We will prove the following theorem.
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THEOREM: For all integer k between 1 and d = dim(M) there exists an ergodic
invariant probability measure v(k) for which

Here x1 > x2 = -+ = xa are the Lyapunov exponents of v(k).

Notice that when k£ = d and f is a ramified covering in some sense, the
theorem can be deduced from a result due to T.-C. Dinh and N. Sibony (see [3]
Paragraph 2.3).

Proof of the theorem

Let k be a positive integer between 1 and d. We have to prove that there exists
an ergodic invariant probability measure v (k) for which (see [1] Chapter 3)

k
1
(1) X_;x = lm / log |AFT, £™|du (k) (y) > di.

There will be three steps in the proof of the theorem.

In the first one, we will change the volume-expansion dj into an expansion
of |[A*T, f™|. More precisely, we will find points z,, with n% log |AkTI(m)f"l| >
dr, — () (with e(l) — 0 when [ — +00).

In the second part, we will see that the expansion of |AkTI(m)f"l| can be
spread out in time. We will give the construction of a measure v; such that
di —€'(1) < £ [log |A*T, f™|dvi(y) (with &’(1) — 0 when | — +00).

The third step of the proof will be to take the limit when [ — oo in the
previous inequality.

1) FIRST STEP. Let n; be a subsequence such that

ng
L 1og sup L09)

— dj,.
no o ees, V(o) ¥

We can find now a sequence o, € S; which verifies

1 log V(fnz °0op,)

“log — %) g,
n V(on,) b

In the next lemma, we prove that we have expansion for |A*T), | for some z.
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LEMMA 1: For alll > 0 there exists z(n;) € M with:
V(f" oon, ))
2V(op,) /°

Proof: 1If this was not the case, then we would have an integer [ such that for
allx € M,

log [A" Ty, f™!] > log (

V(fnl © Unz)
2V(on,)

So (see [1] chapter 3.2.3 for properties on exterior powers),

|AkTIfnL| <

V(f"oon)= /D,C ST, (f™ 0 o, )|dA(x) = /ch |AkT0nl(w)fnl o ATy, [dA(x)

is bounded from above by

V(f'ooan)

[T o A T ad ) <
Dk‘

and we obtain a contradiction. |

COROLLARY 1: There exists a sequence (1) which converges to 0 such that
1 k ny
n_l 10g |A Tx(nl)f | > d — E(l),

for some points x(n;) in M.

2) SECOND STEP. In this section, we will spread out in time the previous
expansion. Let m be a positive integer. We will cut now n; in m different ways.
By using the Euclidian division, we can find ¢¢ and r! (for i =0,...,m — 1)
such that
ny :i—l—quf—i—rf,
with 0 <7} <m.
Ifi € {0,...,m — 1}, we have

a—1
k n k ri k m k %
|A TL(nl)f L| < |A Tf7+qu(a:(nl))f l| X H |A Tf””””(w(m))f | X |A TI(TLL)f |7
3=0

so, using the previous corollary,

q—1
k ri k m
nl(dk — E(Z)) < log |A Tf”’"qf. (w(nl))f l| + jZO 10g |A Tfi+j”L(:n(nl))f |
+ log |AkTuL(nl)fl|
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If we sum over the m different ways to write n;, we obtain:

m—1 ) m—1 qlifl
mnl (dkf - E(l)) < Z 1Og |Akai+mflli (.L(nl))f” "(nl))f’r”|
i=0 i=0 j=0

m—1
+ 3 1og ATy 1]

=0

We have to transform this estimate into a property of a measure. To achieve
this we remark that

1og [A* T (4 (ny) ] = /108;|AkTyfm|d5fp(z(m))(y),

where 6 s (4(n,)) is the dirac measure at the point f?(x(n;)).
So the previous inequality becomes

mlqz1

1 1
di —e(l) < a1 + oy /10g |AkTyfm|d( 5f7',+m,j(l(nl))) (y) + by,

=0 5=0
with .
1 '— ;
= log |AFT ... T
W ; OB IA T it (g ) |
and )
1 — .
= log |[A*T, .
mng ; Og| L(nz)f|

Now, since f is a C''-map we have:

-1

3

1
mn;

2
log L™* < il log L
mng

a; <

Il
o

%

where L = max(max,, |7, f],1) and

,_.

m—

k 2
log L™ < rm log L.
mny

S‘H

=0

So the sequences a; and b; are bounded from above by a sequence which con-
verges to 0 when [ tends to infinity.

In conclusion, we have

(2) d, —€'(1) < nl%/logka f™dv(y),
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with
-1

1 m—
= Z O st (a(ny));

=0 75=0

and £'(1) a sequence which converges to 0.

3) THIRD STEP. The aim of this section is to take a limit in (2).

First, observe that

ni—m

Z O y7 (a(n1))
1

and that the sequence o Zp 0 (Sfp(x(nl)) — y; converges to 0. In particular,
there exists a subsequence of v; which converges to a measure v which is a
probability measure invariant under f and independent of m. We continue to
call v; the subsequence which converges to v. To complete the proof of the
theorem, we have to take the limit in (2). However, we have to be careful
because the function y — log |A*T, f™| is not continuous. But, we have the
following lemma.

LEMMA 2:

, 1 . 1 .
11msupE/log|AkTyf |[dvi(y) < E/log|AkTyf |dv(y).

l—o0

Proof: For r € N, let ®,(y) = max(log |A*T, f™|,—r). The functions @, are
continuous and the sequence ®, decreases to the map y — log |AkTy f™| when
r goes to infinity. Then

1 1
= [1og AT, ) < o [ @ )duy)

and

1 1
li — [ log|A*T, f™|d < — [ @, (y)dv(y),
msup - [ 1o [T, " dn(w) < - [ @ ()av(y)

l—o0

because ®,. is continuous. Now, we obtain the lemma by using the monotone
convergence theorem. |

Remark: This lemma is valid for any upper semicontinuous function instead
of y — L log |AFT, f™|.

It remains to take the limit when [ — +o0 in (2). Then we obtain
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COROLLARY 2: For all m, we have

1
dp < ooy /10g|AkTyfm|dV(y)-

In particular (see (1)),

k
di < /in(y)du(y)

where the x1 > x2 = -+ > xq are the Lyapunov exponents of v. Finally, by
using the ergodic decomposition of v, we obtain the existence of an ergodic
invariant probability measure v(k) with

k
d <)X
i=1
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